1. **Note**

When using the EWS.CAPTO™ tool holder, make sure that the function surfaces are clean and intact. A tool insert or sealing plug must always be mounted to protect the device from dirt. Never operate a driven tool without a tool insert that has been inserted and clamped according to instructions!

2. **Overview**

3. **Use**

3.1. **Preparation**

Aligning the clamping set and clamping bolt

Before clamping a tool insert, the clamping set in the spindle must first be aligned with the spring-loaded clamping bolt in the tool housing. To do this, turn the spindle, if necessary. The correct alignment is marked on the spindle to help you find the correct position.

Note: On CDI turret disks, the clamping bolt is found in the turret disk.

Spring-loaded clamping bolt

The tool insert is clamped and released via the spring-loaded bolt which must be brought into the actuation position. To do this, using a suitable inner hex key tool, the clamping bolt is pressed down towards the spindle axis and, at the same time, slowly turned in any direction until it drops into the axial stop in the clamping set. At that point, the clamping bolt hub is approx. 5-8 mm. The clamping set is only actuated by turning after the actuation position has been reached.

Direction of rotation

Clamping is effected in the clockwise direction

Releasing is effected in the counterclockwise direction
3.2. Inserting the tool insert

Open the tool holder fully before inserting the tool insert. To do this, gently turn the clamping bolt counterclockwise to the 0° end position. Then introduce the insert into the spindle until it clicks into place.

3.3. Clamping the tool insert

When the tool insert has been inserted, turn the clamping bolt clockwise. When clamping, use a torque wrench to prevent damage by over-tightening. Do not exceed the actuation torques in the table below. The specific maximum actuation torque is also noted on the tool housing of each driven tool.

The tool clamping/self-locking effect is initiated from a rotation angle of approx. 75°, and can be recognised by the increasing resistance. When the actuation torque is at a maximum, maximum clamping force is achieved by rotating by approx. 105°. The clamping bolt should then completely spring out of the actuation position back into its original position so that the spindle turns freely.

3.4. Releasing the tool insert

To release the tool insert, turn the clamping bolt counterclockwise back to the actuation position. Just before reaching the end position, increased torque must be applied to the tool ejector.

3.5. Parameters

<table>
<thead>
<tr>
<th>EWS.CAPTO™ Size</th>
<th>C3</th>
<th>C4</th>
<th>C5</th>
<th>C6</th>
<th>C8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. tightening torque [Nm]</td>
<td>35</td>
<td>50</td>
<td>70</td>
<td>90</td>
<td>130</td>
</tr>
<tr>
<td>Max. clamping force [kN]</td>
<td>16</td>
<td>21</td>
<td>27</td>
<td>37</td>
<td>42</td>
</tr>
<tr>
<td>Retention force [N]</td>
<td>20</td>
<td>25</td>
<td>40</td>
<td>50</td>
<td>70</td>
</tr>
</tbody>
</table>